Close Menu
    Facebook LinkedIn YouTube Instagram X (Twitter)
    Blue Tech Wave Media
    Facebook LinkedIn YouTube Instagram X (Twitter)
    • Home
    • Leadership Alliance
    • Exclusives
    • Internet Governance
      • Regulation
      • Governance Bodies
      • Emerging Tech
    • IT Infrastructure
      • Networking
      • Cloud
      • Data Centres
    • Company Stories
      • Profiles
      • Startups
      • Tech Titans
      • Partner Content
    • Others
      • Fintech
        • Blockchain
        • Payments
        • Regulation
      • Tech Trends
        • AI
        • AR/VR
        • IoT
      • Video / Podcast
    Blue Tech Wave Media
    Home » What is supervised learning?
    model-906
    model-906
    Data Centres

    What is supervised learning?

    By Zoey ZhuSeptember 6, 2024No Comments3 Mins Read
    Share
    Facebook Twitter LinkedIn Pinterest Email
    • Supervised learning is a type of machine learning where models are trained on labelled data to predict outcomes or classify new data based on past examples.
    • It involves using algorithms to learn a mapping from inputs to outputs, making it one of the most common techniques in data science and AI.

    Supervised learning is a machine learning paradigm where an algorithm is trained using a dataset that contains input-output pairs. The primary goal is for the model to learn from these examples to make accurate predictions or classifications on new, unseen data. During the training process, the model adjusts its parameters to minimise the error between its predictions and the actual outcomes provided in the training data. This iterative process continues until the model achieves a satisfactory level of accuracy.

    Key algorithms in supervised learning

    Various algorithms are used in supervised learning, each suitable for different types of tasks:

    Linear regression: Used for predicting a continuous value, such as estimating house prices based on features like square footage and location. Linear regression models the relationship between input variables and a continuous output.

    Logistic regression: Despite its name, logistic regression is used for binary classification tasks, such as determining whether an email is spam or not. It estimates the probability of a binary outcome based on input features.

    Decision trees: These models make decisions by splitting data into subsets based on feature values, forming a tree-like structure of decisions. They are versatile and can be used for both classification and regression tasks.

    Support vector machines: SVMs are used for classification tasks by finding the hyperplane that best separates different classes in the feature space. They are effective for high-dimensional data and complex classification problems.

    Also read: Why are predictive analytics supervised learning techniques?

    Also read: What is the role of neural networks in predictive analytics?

    Applications of supervised learning

    Supervised learning is widely applied across various domains:

    Healthcare: Predictive models can forecast disease outbreaks, patient outcomes, and treatment responses based on historical health data.

    Finance: Supervised learning algorithms are used for credit scoring, fraud detection, and risk assessment by analysing financial transactions and credit histories.

    Marketing: Businesses use supervised learning to analyse customer behaviour, segment markets, and personalise advertising strategies.

    Challenges and considerations

    While supervised learning is powerful, it also presents challenges. The quality of the predictions heavily depends on the quality and quantity of the labelled data. Moreover, overfitting can occur if the model learns too much from the training data and performs poorly on new data. Balancing model complexity and generalisation is crucial for achieving optimal performance.

    AI algorithm Supervised learning
    Zoey Zhu
    • Instagram

    Zoey Zhu is a news reporter at Blue Tech Wave media specialised in tech trends. She got a Master degree from University College London. Send emails to z.zhu@btw.media.

    Related Posts

    Interview with Sarath Babu Rayaprolu from Voxtera on dynamic and secure VoIP

    July 7, 2025

    Interview with Dr Nitinder Mohan: Edge, satellites, and the reality behind Internet performance

    July 7, 2025

    T‑Mobile delivers full-state 5G in Florida with $2B investment

    July 4, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    CATEGORIES
    Archives
    • July 2025
    • June 2025
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023

    Blue Tech Wave (BTW.Media) is a future-facing tech media brand delivering sharp insights, trendspotting, and bold storytelling across digital, social, and video. We translate complexity into clarity—so you’re always ahead of the curve.

    BTW
    • About BTW
    • Contact Us
    • Join Our Team
    TERMS
    • Privacy Policy
    • Cookie Policy
    • Terms of Use
    Facebook X (Twitter) Instagram YouTube LinkedIn

    Type above and press Enter to search. Press Esc to cancel.