Close Menu
  • Home
  • Leadership Alliance
  • Exclusives
  • History of the Internet
  • AFRINIC News
  • Internet Governance
    • Regulations
    • Governance Bodies
    • Emerging Tech
  • Others
    • IT Infrastructure
      • Networking
      • Cloud
      • Data Centres
    • Company Stories
      • Profile
      • Startups
      • Tech Titans
      • Partner Content
    • Fintech
      • Blockchain
      • Payments
      • Regulations
    • Tech Trends
      • AI
      • AR / VR
      • IoT
    • Video / Podcast
  • Country News
    • Africa
    • Asia Pacific
    • North America
    • Lat Am/Caribbean
    • Europe/Middle East
Facebook LinkedIn YouTube Instagram X (Twitter)
Blue Tech Wave Media
Facebook LinkedIn YouTube Instagram X (Twitter)
  • Home
  • Leadership Alliance
  • Exclusives
  • History of the Internet
  • AFRINIC News
  • Internet Governance
    • Regulation
    • Governance Bodies
    • Emerging Tech
  • Others
    • IT Infrastructure
      • Networking
      • Cloud
      • Data Centres
    • Company Stories
      • Profiles
      • Startups
      • Tech Titans
      • Partner Content
    • Fintech
      • Blockchain
      • Payments
      • Regulation
    • Tech Trends
      • AI
      • AR/VR
      • IoT
    • Video / Podcast
  • Africa
  • Asia-Pacific
  • North America
  • Lat Am/Caribbean
  • Europe/Middle East
Blue Tech Wave Media
Home » The process of training an AI model
The-Process-of-Training-an-AI-Model
The-Process-of-Training-an-AI-Model
AI

The process of training an AI model

By Revel ChengJuly 3, 2024No Comments3 Mins Read
Share
Facebook Twitter LinkedIn Pinterest Email
  • Successful AI model training starts with quality data that accurately and consistently represents real-world and authentic situations.
  • Using too wide of a data set, too complex of an algorithm, or the wrong model type could lead to a system that simply processes data rather than learning and improving.

Fundamentally, AI uses data to make predictions. That capability may power “you may also like” tips on streaming services, but it’s also behind chatbots capable of understanding natural language queries and predicting the correct answer and applications that look at a photo and use facial recognition to suggest who’s in the picture. Getting to those predictions, though, requires effective AI model training, and newer applications that depend on AI may demand slightly different approaches to learning.

Prepare the data

Successful AI model training starts with quality data that accurately and consistently represents real-world and authentic situations. Without it, ensuing results are meaningless. To succeed, project teams must curate the right data sources, build processes and infrastructure for manual and automated data collection, and institute appropriate cleaning/transformation processes.

Also read: The 4 challenges of data management

Also read: NLP techniques in data science

Select a training model

If curating data provides the groundwork for the project, model selection builds the mechanism. Variables for this decision include defining project parameters and goals, choosing the architecture, and selecting model algorithms. Because different training models require different amounts of resources, these factors must be weighed against practical elements such as compute requirements, deadlines, costs, and complexity.

Perform initial training

Just as with the example above of teaching a child to tell a cat from a dog, AI model training starts with basics. Using too wide of a data set, too complex of an algorithm, or the wrong model type could lead to a system that simply processes data rather than learning and improving. During initial training, data scientists should focus on getting results within expected parameters while watching for algorithm-breaking mistakes. By training without overreaching, models can methodically improve in steady, assured steps.

Validate the training

Once the model passes the initial training phase, it reliably creates expected results across key criteria. Training validation represents the next phase. Here, experts set out to appropriately challenge the model in an effort to reveal problems, surprises, or gaps in the algorithm. This stage uses a separate group of data sets from the initial phase, generally with increased breadth and complexity versus the training data sets.

As data scientists run passes with these data sets, they evaluate the model’s performance. While output accuracy is important, the process itself is just as critical. Top priorities for the process include variables such as precision, the percentage of accurate predictions, and recall, the percentage of correct class identification. In some cases, the results can be judged with a metric value. For example, an F1 score is a metric assigned to classification models that incorporate the weights of different types of false positives/negatives, allowing a more holistic interpretation of the model’s success.

Test the model

Once the model has been validated using curated and fit-for-purpose data sets, live data can be used to test performance and accuracy. The data sets for this stage should be pulled from real-world scenarios, a proverbial “taking the training wheels off” step to let the model fly on its own. If the model delivers accurate—and more importantly, expected—results with test data, it’s ready to go live. If the model shows deficiencies in any way, the training process repeats until the model meets or exceeds performance standards.

accurate predictions AI models F1 score
Revel Cheng

Revel Cheng is an intern news reporter at Blue Tech Wave specialising in Fintech and Blockchain. She graduated from Nanning Normal University. Send tips to r.cheng@btw.media.

Related Posts

HP to cut up to 6,000 jobs globally as it shifts toward AI-driven strategy

November 26, 2025

UK government backs satellite innovation and AI start‑ups

November 24, 2025

Transatel selects Oracle to power its 5G Standalone core for IoT

November 17, 2025
Add A Comment
Leave A Reply Cancel Reply

CATEGORIES
Archives
  • November 2025
  • October 2025
  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • August 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023

Blue Tech Wave (BTW.Media) is a future-facing tech media brand delivering sharp insights, trendspotting, and bold storytelling across digital, social, and video. We translate complexity into clarity—so you’re always ahead of the curve.

BTW
  • About BTW
  • Contact Us
  • Join Our Team
  • About AFRINIC
  • History of the Internet
TERMS
  • Privacy Policy
  • Cookie Policy
  • Terms of Use
Facebook X (Twitter) Instagram YouTube LinkedIn
BTW.MEDIA is proudly owned by LARUS Ltd.

Type above and press Enter to search. Press Esc to cancel.