Close Menu
    Facebook LinkedIn YouTube Instagram X (Twitter)
    Blue Tech Wave Media
    Facebook LinkedIn YouTube Instagram X (Twitter)
    • Home
    • Leadership Alliance
    • Exclusives
    • Internet Governance
      • Regulation
      • Governance Bodies
      • Emerging Tech
    • IT Infrastructure
      • Networking
      • Cloud
      • Data Centres
    • Company Stories
      • Profiles
      • Startups
      • Tech Titans
      • Partner Content
    • Others
      • Fintech
        • Blockchain
        • Payments
        • Regulation
      • Tech Trends
        • AI
        • AR/VR
        • IoT
      • Video / Podcast
    Blue Tech Wave Media
    Home » The evolution of data mining: From origins to today
    blog-data mining-911
    blog-data mining-911
    IT Infrastructure

    The evolution of data mining: From origins to today

    By Lia XuSeptember 11, 2024No Comments3 Mins Read
    Share
    Facebook Twitter LinkedIn Pinterest Email
    • Data mining is a subfield of computer science which blends many techniques from statistics, data science, database theory and machine learning.
    • Applications of data mining include customer profiling and segmentation, market basket analysis, and anomaly detection.

    Data mining does not have a single inventor. Instead, it has evolved over time through contributions from various researchers and practitioners across different domains. The development of data mining involves a combination of advances in statistics, machine learning, artificial intelligence, and computer science. In this blog, you can see some key figures and milestones in the history of data mining.

    The origins of data mining

    John Tukey (1915-2000): An American statistician, Tukey’s contributions to exploratory data analysis (EDA) were groundbreaking. His development of methods for summarising and visualising data provided a crucial foundation for later data mining techniques. Tukey’s work emphasised the importance of looking beyond raw data to understand its underlying structure and patterns.

    Early contributions to statistical techniques

    As data mining evolved, it drew heavily on statistical methods to analyse and interpret data. Jerome Friedman, Robert Tibshirani, and Trevor Hastie: This trio of statisticians significantly advanced the field with their work on classification and regression techniques. Their development of algorithms like classification trees and ensemble methods, including boosting, became fundamental components of modern data mining. Their contributions provided the theoretical underpinnings for many techniques used in extracting insights from data.

    Also read: 5 essential risks of data mining you need to know

    Also read: Understanding data mining and its importance in business

    The advent of machine learning

    Arthur Samuel (1901-1990): Often credited with coining the term “machine learning,” Samuel’s work in the 1950s on algorithms that improve through experience laid the groundwork for many data mining methods. His research in creating programs that could learn from data was instrumental in shaping the algorithms used in data mining today.

    Database systems and Association Rules

    The 1990s saw significant advancements in database systems and algorithms, which greatly impacted data mining practices. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami: These researchers developed the Apriori algorithm, a pioneering method for mining association rules in large databases. Their work allowed businesses and researchers to uncover relationships between variables in datasets, such as finding which products are often bought together. This development became a cornerstone of data mining, particularly in market basket analysis.

    Modern data mining: Formalising the field

    As data mining continued to evolve, efforts were made to formalise and standardise the techniques and methodologies used. Jiawei Han and Micheline Kamber: Their influential textbook, “Data Mining: Concepts and Techniques,” has become a staple in the field. Han and Kamber’s work helped to synthesise and articulate the methods and applications of data mining, making it accessible to students and professionals alike. Their contributions provided a comprehensive overview of data mining techniques and best practices.

    combination of advances in statistics data mining database systems
    Lia Xu

    Lia XU is an intern reporter at BTW Media covering tech and AI news. She graduated from Zhejiang normal university. Send tips to l.xu@btw.media.

    Related Posts

    What happens after you submit an IP request to AFRINIC

    July 14, 2025

    Cloud Innovation calls for AFRINIC wind-up after ‘impossible’ election standards

    July 14, 2025

    Huawei targets bigger role in Brazil data centre market

    July 14, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    CATEGORIES
    Archives
    • July 2025
    • June 2025
    • May 2025
    • April 2025
    • March 2025
    • February 2025
    • January 2025
    • December 2024
    • November 2024
    • October 2024
    • September 2024
    • August 2024
    • July 2024
    • June 2024
    • May 2024
    • April 2024
    • March 2024
    • February 2024
    • January 2024
    • December 2023
    • November 2023
    • October 2023
    • September 2023
    • August 2023
    • July 2023

    Blue Tech Wave (BTW.Media) is a future-facing tech media brand delivering sharp insights, trendspotting, and bold storytelling across digital, social, and video. We translate complexity into clarity—so you’re always ahead of the curve.

    BTW
    • About BTW
    • Contact Us
    • Join Our Team
    TERMS
    • Privacy Policy
    • Cookie Policy
    • Terms of Use
    Facebook X (Twitter) Instagram YouTube LinkedIn

    Type above and press Enter to search. Press Esc to cancel.